

Ultra Low Pressure Spraying Technology

A Revolution In Spraying

Why do we need a Low Energy Spraygun?

Paint and coating technology has advanced and outpaced current spraygun technology, where higher solids require higher pressures to atomise; and Nano Coatings need accurate film thickness delivery

We have addressed these issues with our Ultra Low Energy Solution.

Accreditation

CREST - Carried out the independent spraygun transfer efficiency test protocol, (Centre of Research Engineering Surface Technology DIT (Dublin Institute of Technology), Ireland.

(Test used EN 13966-1:2003 Test Protocol Method 2, where a test result of 85% T.E. was recorded)

- Review of test result have termed the low energy spraygun as "An Engineering Control" by" (Health & Safety Authority, Dublin, Ireland)

EPA - Review noted that it significantly reduced Hazardous Air Pollutants and Hazardous Waste (Environmental Protection Agency, Ireland)

Compliant - European legislation has changed, to incorporate "Best Available Technology" (BAT), as opposed to "Cost Effective Technology". The reference legislation is IPPC 96/61/EC and EPA Act 1992 to 2007.

These are highly significant areas of accreditation. The BAT accreditation leads to a degree of obligation as organisations should utilise the technology above other systems as it offers significant Health and Safety benefits.

THIRD PARTY TESTING

- •We want our customers to be assured of the high standards of design and performance by third party testing.
- •To validate all our claims we have used The Centre for Research in Engineering Technology (CREST) Dublin, Ireland to test our technology using EN 13966-1:2003 This normative testing meets prevailing "automotive quality requirements"
- •The test results recorded an 85%

 Transfer Efficiency at the required application rate and quality of finish. Most guns work at around 50% efficiency
- •We aim to provide low energy products to the highest standards in design and performance in preparation for any global test

Competitive Advantages of the Low Energy Spraygun

	Emissions Reduced Below EPA Limits	Meets and Betters EPA BAT Notification	Micro spray fan adjustment
	Transfer Efficiency 85%	 Safer Applications of Nano Paints 	 Reduced Carbon Footprint
	Spray 70% Solids at 10psi	 Engineering Control Safety Factor 	• 60% Waste Reduction
MANAGARIE	Lower Electrical and Air Costs	• 6 - 9 Month use of Spraytip	 Limited Life time guarentee on none wearing parts
KORKOWAN	Extraction Filter Longer Life	Spray gun maintenance < 3 mins	 Aircap & Needle Suits all Spraytips

Product Life Cycle

All components of the Ultra Low Energy Spraygun offer

- Measurable EIPRO
- Impacts ISO 14040 & ISO 14044 & PAS 2050
- Immediate impact on Carbon Footprint of user

An Ideal Solution for the application of ultra thin coatings and nano layers

Problem

- Exposure Risk
- Material cost
- Consistent film thickness
- Surface shape and contours
- Trained Operators

Solution

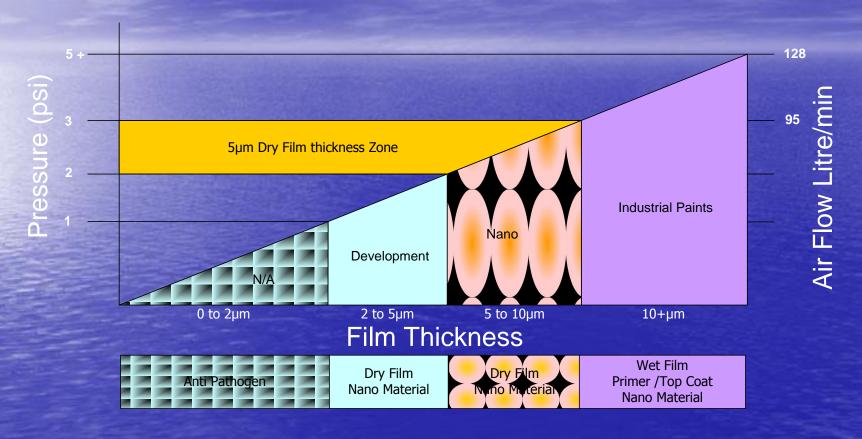
- Reduced airborne hazards
- Higher transfer efficiency
- Micro adjustment 10 to 600µm
- Adjustable Fan shape
- Operational Simplicity

Low Energy Spraygun Efficiency , related to paint savings

Content	of paint	And				and vola							
% *	per um	Emmissi	100%	95%	90%	85%	80%	70%	60%	50%	40%	30%	
	W. V.	Paint	1.000	1.053	1.111	1.176	1.250	1.429	1.667	2.000	2.500	3.330	
		Volatiles	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
100	1.000	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	1.056	1.108	1.170	1.240	1.320	1.500	1.755	2.110	2.630	3.510	
		Volatiles	0.0526	0.0554	0.0585	0.0619	0.0658	0.0752	0.0880	0.105	0.132	0.175	4
95	1.053	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
7		Paint	1.110	1.170	1.240	1.310	1.390	1.590	1.852	2.220	2.780	3.700	
		Volatiles	0.111	0.117	0.123	0.131	0.139	0.159	0.185	0.222	0.278	0.370	
90	1.111	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	1.180	1.240	1.310	1.380	1.470	1.680	1.960	2.350	2.940	3.920	
		Volatiles	0.176	0.186	0.196	0.208	0.221	0.252	0.294	0.353	0.441	0.588	
85	1.176	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
2	2	Paint	1.250	1.320	1.390	1.470	1.560	1.790	2.080	2.500	3.130	4.170	
		Volatiles	0.250	0.263	0.278	0.294	0.313	0.357	0.417	0.500	0.625	0.833	
80	1.250	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	1.330	1.400	1.480	1.570	1.670	1.900	2.220	2.670	3.330	4.440	
		Volatiles	0.333	0.351	0.370	0.392	0.417	0.476	0.556	0.667	0.833	1.110	
75	1.333	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
	2	Paint	1.430	1.500	1.580	1.680	1.790	2.041	2.381	2.860	3.570	4.760	
		Volatiles	0.429	0.451	0.476	0.504	0.536	0.612	0.714	0.857	1.071	1.430	
70	1.429	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	1.540	1.620	1.710	1.810	1.930	2.220	2.570	3.080	3.850	5.130	
		Volatiles	0.538	0.567	0.598	0.633	0.673	0.769	0.897	1.080	1.350	1.790	
65	1.538	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	1.670	1.750	1.850	1.960	2.080	2.380	2.780	3.330	4.170	5.560	
		Volatiles	0.667	0.702	0.741	0.784	0.833	0.952	1.110	1.330	1.670	2.220	
60	1.667	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	2.000	2.110	2.220	2.350	2.500	2.860	3.330	4.000	5.000	6.670	
		Volatiles	1.000	1.050	1.110	1.180	1.250	1.430	1.670	2.000	2.500	3.330	
50	2.000	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
7	7	Paint	2.500	2.630	2.780	2.940	3.130	3.570	4.170	5.000	6.250	8.330	
		Volatiles	1.500	1.580	1.670	1.760	1.880	2.140	2.500	3.000	3.750	5.000	
40	2.500	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
		Paint	3.330	3.510	3.700	3.920	4.170	4.760	5.560	6.670	8.830	11.100	
		Volatiles	2.330	2.450	2.590	2.740	2.920	3.320	3.880	4.660	5.830	7.770	
30	3.330	Solids*	0.000	0.0526	0.111	0.176	0.250	0.429	0.667	1.000	1.500	2.330	
							7/51	11/1/		11/2			

Note: Effective solids content is herein interpreted as initial solids content plus any paint components which react to form solids, e.g. epoxy resins, isocyanates and glycols/diglycols

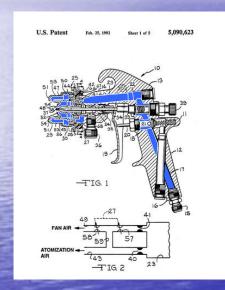
Industry norm


EPA Requirement

*ULP Performance This Matrix Chart indicates the relationship between Pollutants and application Transfer Efficiency.

It also identifies the atmospheric solvent emission levels and the airborne particulates that surround the operator.

*ULP =Ultra Low Pressure


Application of Nano Material

Based on trials carried out with Nano particle water based coatings

The ULP Difference It's all about the air!!!

The Low Energy Difference

Current Technology

- i. Convoluted air passage way
- ii. Inefficient use of air
- iii. Higher frictional and air turbulence through passage way
- iv. Higher pressures needed to overcome item i.

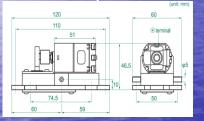
?

We Apologize
Due to proprietary of design we
can only show physical difference
in the class

An improved paint spray gun, as set forth in claim 10, wherein said high pressure air is at least 60 psig, wherein said first orifice drops said high pressure air to no more than 10 psig in said first passage when said valve means is closed to block fan air flow, and wherein said first and second orifices drop said high pressure air to no more than 10 psig when said valve means is open to provide

On-Going

Ultra Low Energy Application Systems


Utilising alternative low energy methods of delivery we have established a supply chain bringing the most up to date technologies together such as:

- Battery driven Air Compressor
- Battery -Low energy diaphragm pump running as low as 2 psi
- Unique filtration RPE mask
- Back pack fully portable delivery system

Ultra Low Energy Equipment

Air Compressor

PSI:110

LMin: 55

Wgh:0.5kg

Battery 12V

Life Cycle 4 Hrs

PSI: 4.5

LMin: 25

Wgh: 5 kg

Battery 12V

Life Cycle 4 Hrs

The USPs of the technology are...

- More paint is placed on to the target surface.
- •Meets the highest standards in terms of auto finish.
- Massive reduction in particulate dispersion into the environment
- Significant reduction in maintenance costs of the spray gun.= thousands of € pa.
- One gun can be used for all paint types, without the need for thinning.
- Exceptional variability of fan shape and size.
- Massive reduction in energy costs.
- Almost zero overspray.
- •Highly portable. Mini compressors available or standard compressors can be used.
- Price matches with other professional spray guns
- Offers savings of approximately 50% when compared to standard spray systems

Our Mission

• We have designed a truly revolutionary spray gun; we now have to take it to the rest of the world.

"High Efficency Low Energy"